Comments: Caballero & Krishnamurthy

Financial System Risk and Flight to Quality

Jon Faust
faustj@frb.gov
http://e105.org/faustj

Federal Reserve Board
Very nice paper

- Good topic: liquidity crises
Very nice paper

- Good topic: liquidity crises
- Ripe for *nonstandard* methods
Very nice paper

- Good topic: liquidity crises
- Ripe for *nonstandard* methods
 - Involves “liquidity” . . .
Very nice paper

- Good topic: liquidity crises
- Ripe for *nonstandard* methods
 - Involves “liquidity” . . .
 . . . which is complex and ill-defined
Very nice paper

- Good topic: liquidity crises
- Ripe for *nonstandard* methods
 - Involves “liquidity” . . .
 - . . . which is complex and ill-defined
 - Crisis are low pr. events . . .
Very nice paper

- Good topic: liquidity crises
- Ripe for *nonstandard* methods
 - Involves “liquidity” . . .
 - . . . which is complex and ill-defined
 - Crisis are low pr. events . . .
 - . . . and people do badly with these
Got right answer
Find ways to guarantee liquidity provision when it is most needed
This discussion

- Treatment of *liquidity* and low pr. events
- Simple analogous model
Issues: Is this liquidity?

- In model no diff. b/t liq. and typical good
Issues: Is this liquidity?

- In model no diff. b/t liq. and typical good
- Basic structure:
Issues: Is this liquidity?

- In model no diff. b/t liq. and typical good
- Basic structure:
 - Agents overweight certain events
Issues: Is this liquidity?

- In model no diff. b/t liq. and typical good
- Basic structure:
 - ♦ Agents overweight certain events
 - ♦ ⇒ hoarding
Issues: Is this liquidity?

- In model no diff. b/t liq. and typical good
- Basic structure:
 - Agents overweight certain events
 - ⇒ hoarding
 - Solution: get more stuff
Issues: Is this liquidity?

- In model no diff. b/t liq. and typical good
- Basic structure:
 - ♦ Agents overweight certain events
 - ♦ ⇒ hoarding
 - ♦ Solution: get more stuff
- Unique aspects of liq. may make the pol. advice more compelling
Illustration: Friedman in disguise?

- Friedman rule:
Illustration: Friedman in disguise?

- Friedman rule:
 - Liq. produced at zero marg. cost
Illustration: Friedman in disguise?

- Friedman rule:
 - Liq. produced at zero marg. cost
 - Policy: satiation
Illustration: Friedman in disguise?

- Friedman rule:
 - Liq. produced at zero marg. cost
 - Policy: satiation

- This paper
Illustration: Friedman in disguise?

- Friedman rule:
 - Liq. produced at zero marg. cost
 - Policy: satiation

- This paper
 - No cost of producing/storing extra liq.
Illustration: Friedman in disguise?

- Friedman rule:
 - Liq. produced at zero marg. cost
 - Policy: satiation

- This paper
 - No cost of producing/storing extra liq.
 - No marginal value of liq. in non-crisis
Illustration: Friedman in disguise?

- Friedman rule:
 - Liq. produced at zero marg. cost
 - Policy: satiation

- This paper
 - No cost of producing/storing extra liq.
 - No marginal value of liq. in non-crisis
 - First best if $Z \geq \bar{Z}$
Suggestion

Add discussion of liq. and where it comes from
Issues: Low pr. events

- Paper argues robust decisionmaking realistic
Issues: Low pr. events

- Paper argues robust decisionmaking realistic
 - Plausible
Issues: Low pr. events

- Paper argues robust decisionmaking realistic
 - Plausible
 - Proxies optimization w/ overweight low pr. events
Issues: Low pr. events

- Paper argues robust decisionmaking realistic
 - Plausible
 - Proxies optimization w/ overweight low pr. events
 - People do mess up low pr. events
Issues: Low pr. events

- Paper argues robust decisionmaking realistic
 - Plausible
 - Proxies optimization w/ overweight low pr. events
 - People do mess up low pr. events
- But details may matter
Examples

- VAR may be opposite of robust—ignores utility in tail
Examples

- VAR may be opposite of robust—ignores utility in tail
- Cog. psy. Lit.:
Examples

- VAR may be opposite of robust—ignores utility in tail
- Cog. psy. Lit.: Agents overweight small pr.
Examples

- VAR may be opposite of robust—ignores utility in tail
- Cog. psy. Lit.: Agents overweight small pr. Except when they underweight them
Examples

- VAR may be opposite of robust—ignores utility in tail
- Cog. psy. Lit.: Agents overweight small pr. Except when they underweight them
- Do agents overprepare for disaster?
Examples

- VAR may be opposite of robust—ignores utility in tail
- Cog. psy. Lit.: Agents overweight small pr.
 Except when they underweight them
- Do agents overprepare for disaster?
- Model world needs little prudential reg.
Suggestions

- Discuss low pr. event literature
Suggestions

- Discuss low pr. event literature
- Nice framework for exploring distorted pr. more generally
Simple model

- Two agents on island...
Simple model

- Two agents on island . . .
- With 10,000 chickens . . .
Simple model

- Two agents on island . . .
- With 10,000 chickens . . .
- and \(Z \) units of Tamiflu
Simple model

- Two agents on island . . .
- With 10,000 chickens . . .
- and Z units of Tamiflu
- Assume get flu only once
Simple model

- Two agents on island . . .
- With 10,000 chickens . . .
- and \(Z \) units of Tamiflu
- Assume get flu only once
- Flu-state utility is

\[
\ln(c)
\]

\(c \) is quantity of Tamiflu
2-stage budgeting, exog.

- Non-flu-state spending fixed exog.
2-stage budgeting, exog.

- Non-flu-state spending fixed exog.
- Spend w_0 on flu states
Agent A’s flu-states

- Cond. on getting flu, only issue is 1^{st} or 2^{nd}
Agent A’s flu-states

- Cond. on getting flu, only issue is 1st or 2nd
- Define $\text{pr}(A \text{ first}|A \text{ gets flu}) = \pi_1$
Agent A’s flu-states

- Cond. on getting flu, only issue is 1st or 2nd
- Define \(\text{pr}(A \text{ first}|A \text{ gets flu}) = \pi_1 \)
- Define \(\pi_2 = 1 - \pi_1 \)
A’s flu problem

\[
\max \pi_1 \ln(x) + \pi_2 \ln(y) \\
\text{s.t. } w_0 \geq px + qy
\]
A’s flu problem

\[\begin{align*}
\text{max} \ & \pi_1 \ln(x) + \pi_2 \ln(y) \\
\text{s.t.} \ & w_0 \geq px + qy
\end{align*} \]

Benchmark. Cobb-Douglas \(\Rightarrow \) \(\pi \)s are budget shares:

\[\frac{px}{qy} = \frac{\pi_1}{\pi_2} \]
A’s flu problem

- \[\max \pi_1 \ln(x) + \pi_2 \ln(y) \]
 s.t. \[w_0 \geq px + qy \]

- Benchmark. Cobb-Douglas \(\Rightarrow \) \(\pi \)s are budget shares:
 \[\frac{px}{qy} = \frac{\pi_1}{\pi_2} \]

- If supply side implies \(p = q \):
 \[\frac{x}{y} = \frac{\pi_1}{\pi_2} \]
Robustness with $p = q$

- A knows only: $\pi_1 \in [\underline{\pi}_1, \bar{\pi}_1]$
Robustness with $p = q$

- A knows only: $\pi_1 \in [\underline{\pi}_1, \bar{\pi}_1]$
- Suppose A’s chooses (x, y)
Robustness with $p = q$

- A knows only: $\pi_1 \in [\underline{\pi}_1, \bar{\pi}_1]$
- Suppose A’s chooses (x, y)
- Nasty nature will max. the pr. of state with smaller consump.
Robustness with $p = q$

- A knows only: $\pi_1 \in [\underline{\pi}_1, \bar{\pi}_1]$
- Suppose A’s chooses (x, y)
- Nasty nature will max. the pr. of state with smaller consump.
- 2 cases, either $1/2 \in [\underline{\pi}_1, \bar{\pi}_1]$, or not
Case 1: $\frac{1}{2} < \pi_1$

- Getting flu 1^{st} robustly most likely, so $x > y$.
Case 1: \(\frac{1}{2} < \pi_1 \)

- Getting flu 1\(^{st}\) robustly most likely, so \(x > y \).
- Nature chooses \(\pi_1 = \pi_1 \), to min. pr. of state 1.
Case 1: $\frac{1}{2} < \pi_1$

- Getting flu 1st robustly most likely, so $x > y$.
- Nature chooses $\pi_1 = \bar{\pi}_1$, to min. pr. of state 1.
- Thus: $\frac{x}{y} = \frac{\pi_1}{1-\pi_1}$
Case 2: \(\frac{1}{2} \in [\underline{\pi}_1, \overline{\pi}_1] \)

- Neither 1st or 2nd robustly most likely
Case 2: \(\frac{1}{2} \in [\pi_1, \bar{\pi}_1] \)

- Neither 1\(^{st}\) or 2\(^{nd}\) robustly most likely
- Choose \(x = y \): fully robust
Comments

- Isomorphic to model in paper
- Isomorphic to model in paper
- 3 Poisson processes just generate my πs
Comments

- Isomorphic to model in paper
- 3 Poisson processes just generate my πs
- Props. 1–4 subsumed, others follow directly
Isomorphic to model in paper
3 Poisson processes just generate my πs
Props. 1–4 subsumed, others follow directly
Suggestion: simplify the model
Main lessons

- If agents overweight unlikely events, hoarding results
Main lessons

- If agents overweight unlikely events, *hoarding* results
- One solution: Provide more of hoarded item
Main lessons

- If agents overweight unlikely events, *hoarding* results
- One solution: Provide more of hoarded item
- Correct and probably important!
Main lessons

- If agents overweight unlikely events, *hoarding* results
- One solution: Provide more of hoarded item
- Correct and probably important!